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Project Summary 
 
This project develops a detector-free real-time adaptive signal control model in a low connected 

vehicle (CV) penetration environment, which only requires a few CV trajectories. Critical CVs are 

defined, which referred to the last stopped CV in the queue and the first non-stopped CV that 

passed the intersection. They provide the lower and upper boundaries of queue length, 

respectively. Based on critical CV information, a simple delay estimation model is developed. 

Then the model is integrated with an adaptive control algorithm to generate optimal signal plans 

with the objective of minimizing vehicle delay. Meanwhile, if no CV is observed during one signal 

cycle, historical traffic volume is used to generate signal timing plans. Microscopic simulation 

results from a real-world intersection show the proposed model works well under 10% 

penetration rate in all scenarios. Compared with well-tuned actuated control, the total delay 

reduction can reach as much as 16.3%. 

 

 



 

  

1. Introduction 

Driven by the rapid development of connected vehicle (CV) technologies, we are on the cusp of 
a new revolution in transportation safety and mobility on a scale not seen since the introduction 
of automobiles a century ago. To evaluate the CV technologies in real-world environments, the 
US Department of Transportation (USDOT) has initialized a number of deployment projects 
including the Safety Pilot Model Deployment (SPMD) project in Ann Arbor, Michigan [1], CV pilot 
deployment projects, and Smart City Challenge. Through these projects, thousands of vehicles 
and hundreds of intersections have/will be equipped with wireless communication technologies 
such as dedicated short range communication (DSRC) and 4G/5G cellular communication, which 
enable vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications to improve 
safety, mobility and sustainability. 

Traffic signal control systems, as one of the critical components of urban transportation 
operations, can also benefit from the CV technology. Through V2I communications, the traffic 
control system receives vehicle trajectories from nearby CVs to make control decisions. 
Compared to traditional data from fixed location infrastructure-based sensors, CV data provide 
much more information and have high potentials in improving signal operations. A number CV 
based signal control and performance estimation models have been proposed [2–8]. However, 
results from existing studies have shown that minimum required penetration rates vary from 
different applications, but typically 20%-30% penetration rate is necessary [9]. If the critical 
penetration rate cannot be reached, then data from traditional sources (e.g., loop-detectors) 
need to be added to improve the performance [10]. Some studies intended to characterize 
individual vehicle behaviors through limited CV trajectories. For example, Goodall et al. [5] 
estimated unequipped vehicle location while Feng et al. [3] inferred both location and speed of 
unequipped vehicles. Sun and Ban [11] attempted to reconstruct the entire trajectory of 
unequipped vehicles. From traffic signal control point of view, aggregated performance measures 
such as volume, queue length, travel time and delay are sufficient to optimize traffic signals. 
Although from individual vehicles, these aggregated metrics can be easily derived, it requires 
more information and therefore higher penetration rates. A systematic review of adaptive signal 
control with CVs can be found in [12]. 

Despite substantial efforts in investing and developing CV technologies in the past decade, over 
the next ten years or longer, the CV penetration rate is expected to remain at a low level. 
Therefore, optimizing traffic signals with low penetration rates of CVs is essential and will make 
an immediate impact on the state-of-the-practice. To the best of our knowledge, there are only 
a few studies that focused on low penetration environments. A study from Day and Bullock [9] 
proposed a proof-of-concept study to optimize signal offsets with limited connected vehicle 
market penetration. The penetration rates used in the paper were from 0.1% to 50%. However, 



 

  

instead of focusing on real-time implementation, their analysis periods were set to 3h (offline) 
and 15 min (online). The selected analysis period may be sufficient for offset adjustment since 
offset may change much over a few cycles. However, for real-time adaptive signal control, traffic 
conditions change significantly within 15 minutes. Moreover, the data used in this study were 
sampled from loop detectors, which don’t represent real CV trajectories. A recent study by Zheng 
and Liu [13] utilized aggregated CV trajectory data to estimate traffic volumes. The model was 
formulated as a maximum likelihood estimation problem and solved by the expectation 
maximization (EM) algorithm. The overall penetration varied from 3%-12% at different 
approaches and time of day, and the mean absolute percentage error (MAPE) of the estimated 
volume was about 10%. However, it can’t be implemented for real-time signal operations since 
the trajectory data need to be aggregated over days.  

This project aims to propose new models for real-time traffic signal control under low 
penetration of CVs (i.e., ≤ 10%). It extends the previous study by combining both historical and 
real-time trajectory data to perform detector-free adaptive signal control. A probabilistic model 
is applied to estimate cycle-by-cycle vehicle arrival times and delays based on estimated average 
historical volume and a limited number of observed critical CV trajectories. Then a dynamic 
programming (DP) based adaptive signal control algorithm is applied to generate the optimal 
signal plan, using estimated vehicle delay as the objective function. The proposed model is tested 
in software-in-the-loop (SIL) simulation with various low penetration rates (10%, 5%, 2%, and 0%) 
and demand levels at a real-world intersection. Results are compared to well-tuned actuated 
signal control. 

 

2. Methodology 

Figure 1 shows the CV trajectories in one lane at a signalized intersection under 10% penetration 
rate with a demand level of 700 veh/h/ln, which represents a typical scenario. The figure shows 
that some CVs passed the intersection without stop while others stopped in the queue because 
of the red signal. Some of the vehicle trajectories are only partial because of lane changes. Note 
that during most of the cycles just one or two CVs were observed and during some cycles, there 
was no CV. 

 

 



 

  

 
Figure 1 Illustration of CV trajectory under 10% penetration rate 

 

2.1 Vehicle Delay Estimation 

The effectiveness of traffic signal control models relies on the accuracy of the traffic state 
estimation models. A typical performance index (i.e., objective function) for traffic signal control 
is total vehicle delay. The core idea of using limited trajectories to estimate delay is to utilize 
critical CV information. Critical CVs are defined as the last stopped CV and the first non-stopped 
CV. The last stopped CV provides a lower boundary of queue length while the first non-stopped 
CV provides an upper boundary because the queue has to be fully discharged before the arrival 
of the non-stopped CV. For those cycles that don't have any CV observed, an average hourly 
volume is used to generate vehicle arrival and departure times for delay estimation. The hourly 
volume can be estimated from the aggregation of historical CV trajectory data in [13]. We assume 
the vehicle arrivals follow the Poisson process with a mean arrival rate λ. The cumulative number 
of arrivals during time interval t is expressed as N(t)~Poisson(λt). 

Four cases are identified according to the existence of observed CVs as shown in Figure 2. 

Case 1: No Observed CV 

If no CV is observed during the entire cycle (Figure 2(a)), the only information that can be 
utilized is the average volume estimated by historical data. Given cycle length C, the total number 
of vehicles arrive within the cycle n=λC, which is the mean of the Poisson distribution. Total 
vehicle delay D is the summation of delay from each vehicle. 



 

  

Time (s)

Space (m
)

de

tr
tg

n

C

 
(a) No CV 

Time (s)

Space (m
)

de

tr
tgt

n1 n2

ds

t1 t2

 
(b) Only Stopped CV 

Time (s)

Space (m
)

de

tr
tg t

n1 n2

t1 t2

td

 
(c) Only Non-stopped CV 



 

  

Time (s)

Space (m
)

de

tr
tg t

n1 n2

ds

n3

t1 t2 t3

 
(d) Both Stopped and Non-stopped CV 

Figure 2 Four Scenarios Based on Critical CV Trajectory 

Case 2: Only Stopped CV 

If only stopped CVs are observed during a cycle, then the cycle time is divided into two intervals 
(Figure 2(b)). The first interval is the time period from the entry time of the first stopped vehicle 
to the entry time of the stopped CV (t1), and the second interval is the time period after the entry 
time of the stopped CV until the last vehicle that passes during the green time (t2), with t1+t2=C. 
All vehicles that enter during t1 are stopped vehicles since the stopped CV provides a lower 
boundary of the queue. The number of vehicles that enter during t2 is estimated based on the 
average arrival rate because no more CV information is available. 

Case 3: Only Non-stopped CV 

If only non-stopped CVs are observed during the cycle, then the cycle time is also divided into 
two intervals (Figure 2 (c)). The first interval is the time period from the entry time of the first 
stopped vehicle to the entry time of the non-stopped CV (t1), and the second interval is the time 
period after the entry time of the non-stopped CV until the last vehicle that passes during the 
green time (t2), with t1+t2=C. The non-stopped CV provides an upper boundary of the queue. 
Unlike stopped CV, it only gives the maximum possible number of vehicles entered during t1, 
because the queue can be cleared before the arrival of the non-stopped CV. The total estimated 
delay of vehicles entered during t1 is the summation of total delays of all possible numbers of 
entered vehicles multiplied by the corresponding probability. The number of vehicles that enter 
during t2 is estimated based on the average arrival rate as in Case 2. Note that since the queue is 
already fully discharged before the non-stopped CV, vehicles that enter after the CV don’t cause 
any delay. 

Case 4: Both Stopped and Non-stopped CV 

In this case, both the lower boundary and the upper boundary of the vehicle queue are provided 
by the stopped CV and non-stopped CV respectively (Figure 2 (d)). Therefore, the cycle time is 



 

  

divided into three intervals. The first interval is the time period from the entry time of the first 
stopped vehicle to the entry time of the non-stopped CV (t1). The second interval is the time 
period from the entry time of the stopped CV to the entry time of the non-stopped CV (t2), and 
the third interval is after the entry time of the non-stopped CV until the last vehicle that passes 
during the green period (t3), with t1+t2+t3=C. It is easy to see that delay estimation of the three 
intervals is included in the previous three cases. To avoid redundancy, the detailed calculation is 
skipped. If multiple stopped and non-stopped CVs are observed within one cycle, only the last 
stopped CV and the first non-stopped CV are utilized because they represent the critical 
information. 

For the detailed formulation of the delay estimation method, please refer to [14]. 

 

2.2 Adaptive Signal Optimization 

The adaptive control algorithm is adapted from previous research by Feng et al. [3]. The algorithm 
generates optimal signal phase sequence and duration using a two-level optimization model. The 
model is based on dynamic programming (DP) and can apply different objective functions 
including total delay minimization and total queue length minimization. In this study, only total 
delay minimization is chosen as the objective.  

The algorithm uses an arrival table as the input to the optimization model. The arrival table is a 
two-dimensional matrix with time and phase respectively. The value of each cell is the number 
of vehicles that will arrive at the stop bar at time point t requesting phase p. It is generated based 
on CV trajectory data at the time of executing the signal optimization. The original model adds 
all queuing vehicles to the first line of the arrival table, which doesn’t consider the accumulative 
delay. Delay of all vehicles is calculated from the time point when the signal optimization is 
conducted. In the proposed delay estimated model, entry times of each individual vehicle are 
generated so that the arrival time of each vehicle at the stop-bar can be calculated. As a result, 
the accumulative delay of each queuing vehicle can be obtained. A new arrival table is 
constructed to incorporate the delay from vehicles that already stopped before the planning 
time. 

 

3. Simulation Experiments 

To test the proposed models, a SIL simulation framework is designed and implemented with 
VISSIM microscopic simulation software. The SIL simulation architecture is shown in Figure 3.  
CVs in VISSIM simulation network generate Basic Safety Messages (BSMs) at a frequency of 10Hz 
and broadcast to the Data Processor application. This application also requests Signal Phasing 
and Timing (SPaT) data from the Econolite ASC/3 virtual controller. Processed CV trajectory and 



 

  

signal information are then sent to the Delay Estimation Model. This module generates the arrival 
table and sends it to the Adaptive Control Algorithm, which is responsible for producing an 
optimal signal timing plan with the objective to minimize total vehicle delay. The optimal signal 
plan will be converted into a series of control commands by the Signal Controller Interface 
application and control virtual signal controllers in VISSIM. 
A real-world intersection at Huron Pkwy and Plymouth Rd in Ann Arbor, Michigan is modeled in 
VISSIM 9. The intersection geometry and signal phasing are shown in Figure 4. 
 

 
Figure 3 Software-in-the-loop Simulation Architecture 

 
Figure 4 Geometry and Signal Phasing at Huron Pkwy & Plymouth Rd Intersection 



 

  

To evaluate the proposed delay estimation model, the VISSIM model is run for one hour, and all 
vehicle trajectories are recorded and served as the ground truth. The traffic signals are under 
actuated control so that the cycle lengths and phase splits change over time. FIGURE 5 shows the 
comparison of the estimated total vehicle delay and the actual vehicle delay of Phase 6 by lane 
with 10% penetration rate. There are total 31 full cycles operated within one hour. To further 
quantify the accuracy, we calculate the Mean Absolute Percentage Error (MAPE). 

 
(a) Lane 1 

 
(b) Lane 2 
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(c) Combination of both lanes 

Figure 5 Estimated Vehicle Delay Under 10% Penetration Rate 

Under 10% penetration rate, the MAPEs for Lane 1 and Lane 2 are 18.99% and 14.56% 
respectively. If two lanes are combined together, the MAPE for Phase 6 is 14.30%. We also tested 
the model under 0% penetration rate, under which only hourly volume is used to generate 
vehicle arrivals (i.e., always in Case 1 because of no observed CV). The MAPE for Lane 1 and Lane 
2 are 32.60% and 28.65% respectively. If two lanes are combined together, the MAPE for Phase 
6 is 30.49%. The result indicates that if the hourly volume is used as the only input for the delay 
estimation model, the estimated delays in each cycle significantly differ from the actual delays. 
From Figure 5(c), it can be seen that the vehicle delay of each cycle varied from less than 500 
veh·s to over 2000 veh·s. Estimation using only 10% CV’s data can reduce the MAPE significantly, 
from more than 30% to less than 15% percent. It suggests that just a few critical CV trajectories 
are needed to improve the vehicle delay estimation to a relatively accurate level. 

Since the delay estimation algorithm generates individual vehicle arrival times, an arrival table 
can be easily constructed and served as the input to the adaptive control algorithm. Two 
scenarios with two different demand levels and four penetration rates are evaluated. Scenario 1 
assumes that the estimated hourly volume of each phase (or average arrival rate λ) is accurate. 
Scenario 2 assumes the estimated hourly volume of each phase has 10% error, which is more 
realistic based on field data [13]. In scenario 2, we add 10% of demand on phase one to four and 
deduct 10% of demand on phase five to eight. The objective of such adjustment is to maximize 
the disturbance on the signal timing. Two demand levels are considered as medium (critical v/c 
ratio 0.82) and congested (critical v/c ratio 0.93) traffic conditions. Four penetration rates under 
evaluation are: 10%, 5%, 2% and 0%. Under 0% penetration rate, the adaptive control basically 
becomes a fixed time signal plan, which is generated by the hourly volume (always Case 1 in delay 
estimation algorithm). 
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A total duration of 3900s is executed in VISSIM simulation for each scenario, each demand level, 
and each penetration rate, with 300s of warm-up period and 3600s of data collection time. To 
capture the stochastic pattern, each simulation run is repeated with 5 random seeds. The results 
are compared to a well-tuned fully actuated control, in which the minimum green time, 
maximum green time, yellow interval, and all-red clearance interval are set to be the same as in 
the adaptive control algorithm. The unit extension time of the actuated control is set to 1.6s, 
which is obtained by the recommendations from Signal Timing Manual [15]. TABLE 2 and TABLE 
3 show the delay comparison under two demand levels. 

Table 1 Total Vehicle Delay in Seconds under Medium Demand Level 

Random 
Seed 1 2 3 4 5 Average 

(SD) 

Delay 
Reductio

n 
Scenario 1: Accurate hourly volume estimation 

10% PR 143336 152534 135818 151338 137554 144311 
(7674) 5.23% 

5% PR 148165 157135 141530 158741 149372 150988 
(7034) 0.84% 

2% PR 168963 190877 152779 178334 168224 171835 
(14046) -12.84% 

Actuated 145736 162606 150933 158352 143770 152279 
(8070) N/A 

Scenario 2: 10% hourly volume estimation error 

10% PR 144404 155736 143002 155517 149726 149677 
(5983) 1.71% 

5% PR 157791 168744 146392 159259 151568 156750 
(8447) -2.94% 

2% PR 164093 182495 145614 170820 164004 165405 
(13386) -8.62% 

Actuated 145736 162606 150933 158352 143770 152279 
(8070) N/A 

SD = Standard Deviation 
 
Table 2 Total Vehicle Delay in Seconds under Congested Demand Level 

Random 
Seed 1 2 3 4 5 Average 

(SD) 

Delay 
Reductio

n 
Scenario 1: Accurate hourly volume estimation 



 

  

10% PR 227684 248169 222959 260393 231441 238129 
(15656) 16.33% 

5% PR 240871 258387 222687 260856 231085 242777 
(16692) 14.70% 

2% PR 259532 281069 240524 280446 242579 260830 
(19631) 8.35% 

0% PR 327241 367273 288306 344282 261268 317674 
(42731) -11.62% 

Actuated 256728 305282 279268 330017 251736 284606 
(33074) N/A 

Scenario 2: 10% hourly volume estimation error 

10% PR 252124 282365 243068 279463 258485 263101 
(17189) 7.56% 

5% PR 267432 283013. 242671 271912 249347 262875 
(16577) 7.64% 

2% PR 270629 339032 254176 317639 281232 292541 
(34897) -2.79% 

0% PR 346828 380832 356243 442983 313010 367979 
(48470) -29.29% 

Actuated 256728 305282 279268 330017 251736 284606 
(33074) N/A 

SD = Standard Deviation 

 

4. Findings  

The following findings are made by analyzing the results: 

• When the penetration rate is 10%, the proposed model outperforms well-tuned actuated 
control in all cases. The total vehicle delay is decreased by 16.33% under congested 
demand level with accurate volume estimation. Under the medium demand level with a 
10% volume estimation error, the vehicle delay is still reduced by 1.71%. As the 
penetration rate decreases, the total delay tends to increase.  

• The hourly volume estimated from historical data has a significant impact on the 
performance. Under the same demand level and same penetration rate, the results with 
10% volume estimation error are all worse than no error in volume estimation. When the 
algorithms are executed under low penetration rates, it is common that no connected 
vehicle is observed within the entire cycle. Then the hourly volume serves as the only data 
for determining the phase duration. 



 

  

• Besides penetration rate, the absolute number of observed CV is also crucial to the 
performance of the algorithm. This explains why the algorithm performs better under 
congested demand level than medium demand level with the same penetration rate. 
Under congested demand level with accurate volume estimation, even 2% penetration 
has a delay reduction of 8.35%. However, under the medium demand level with accurate 
volume estimation, model performance with a 5% penetration rate is almost the same as 
actuated control. 

• Vehicle delays with 10% and 5% penetration rates under the congested demand level are 
similar, in both scenarios. This indicates that a few critical vehicle trajectories are enough 
to make an accurate estimation of vehicle delay. Higher penetration rates only receive 
marginal benefits. 

• When the algorithm is executed under the 0% penetration rate, the adaptive control 
becomes a fixed time control. Because no CV trajectory is available, the control decision 
is made only based on estimated hourly volume, which is a set value. The results under 
such conditions are significantly worse than other cases, which supports a well-accepted 
argument that fixed time control can’t accommodate short time demand fluctuation, 
even if the average volume is accurate. Moreover, under congested demand level, the 
intersection under fixed time control may enter oversaturated conditions due to demand 
fluctuation, and the delay increases significantly. On the other hand, actuated and 
adaptive control can handle the demand fluctuation better and prevent the intersection 
enter the oversaturated condition. 

 

5. Recommendations 

One direction for further research is to extend the current model to a corridor level, where the 
vehicle arrivals may not be Poisson distributed, and signal coordination needs to be considered. 
One of the difficulties lay in the determination of platoon size and speed on coordinated phases 
to dynamically update offset and split. In addition, the current model relies on the estimated 
average volume from historical data as the first step. It is very interesting to develop an 
integrated platform that combines the volume estimation algorithm as in [13] and the real-time 
adaptive signal control together so that the estimated volumes can be updated dynamically when 
new CV trajectories become available. 

 

6. Outputs, Outcome, and Impacts 

The proposed model has two significant advantages and real-world implementation impacts. 



 

  

First, it doesn’t require any data from infrastructure-based sensors, which usually have 
considerable high installation and maintenance costs. Second, it only needs at most 10% CV 
penetration rate, so that it can be implemented at an early stage of CV deployment. For example, 
the Ann Arbor Connected Vehicle Test Environment (AACVTE) project is targeting to equip up to 
3,000 vehicles in the next few years, which accounts for about 3% of total vehicles in the Ann 
Arbor metro area. The proposed model has great potential to be implemented at real-world 
intersections in the near future. 

 
The following outputs were generated during the performance of this project: 

• Conference Presentation: 2018 TRB Annual Meeting  

• Journal Paper: Feng, Y., Zheng, J. and Liu, H.X., 2018. Real-time detector-free adaptive 
signal control with low penetration of connected vehicles. Transportation Research 
Record, 2672(18), pp.35. 

https://journals.sagepub.com/doi/full/10.1177/0361198118790860 

 

https://journals.sagepub.com/doi/full/10.1177/0361198118790860
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